Introduzione alla Probabilità e alla Statistica

Da testwiki.
Vai alla navigazione Vai alla ricerca

Template:Risorsa

Introduzione alla Probabilità e alla Statistica

Storia della Probabilità

La Statistica nasce nel Rinascimento come “descrittiva”. Essa serviva principalmente per il conteggio delle nascite e dei morti di uno Stato (deriva appunto dalla parola ‘‘Stato’’). La Probabilità nasce invece per ragioni pratiche nei giochi d'azzardo. Nel '600 abbiamo tre grandi studiosi: Pascal, Fermat e Huygens. Verso la fine del '600 abbiamo Bernoulli e Laplace, verso l'800 Gauss e Poisson. Tra fine '800 e inizio '900 abbiamo Chebychev, Markov, Lyapounov, e come ultimo abbiamo Kolmogorov, colui che renderà la Probabilità una vera e propria teoria matematica.

Definizioni e concetti insiemistici

Popolazione

Insieme di individui e oggetti studiati rispetto ad una determinata caratteristica misurabile.

Campione

Dalla popolazione si estrae casualmente un campione su cui viene solitamente fatta l'analisi.

Probabilità

Prende in considerazione la popolazione e propone le aspettative per il campione.

Inferenza statistica

Effettua il processo contrario della Probabilità, ovvero parte dal campione e in base a quello dice qualcosa sulla popolazione (es. exit poll, ecc...). Non si può fare inferenza statistica se non si conosce la probabilità.

Statistica descrittiva

Analizza o la popolazione o il campione e sintetizza attraverso numeri o grafici particolari situazioni(Istogrammi, torte, ecc...).

Richiami di Calcolo Combinatorio

Serve principalmente per contare. È il primo modo semplice per contare la probabilità.

Principio fondamentale del Calcolo Combinatorio o Principio di Enumerazione

Dati 2 esperimenti per cui il primo ha m esiti possibili e il secondo n esiti possibili, si ha che le possibili sequenze ordinate sono

mn.

Generalizzando a N esperimenti, con n1,n2,n3,...,nN esiti la sequenza può variare in n1n2n3...nN modi possibili.

Esempio targhe automobilistiche

Quante possibili targhe di automobili possiamo formare?

Chiamiamo M il numero di targhe possibili, e immaginiamo ogni casella della targa come un esperimento. In questo modo avremo che nella prima casella ci sono 26 esiti possibili (ovvero le lettere dell'alfabeto), nella seconda ancora 26 esiti, nella terza 10 esiti (le cifre da 0 a 9), e così via. Applicando il Principio di Enumerazione otteniamo:

26261010102626=456.976.000